1.
If log(k2 – 4k + 5) = 0, then the value of k is
• A.
0
• C.
2
• B.
1
• D.
3
• Report
Explanation :
log(K2 - 4K + 5) = 0
 log(K2 - 4K + 5) = log1 ( log 1 = 0)

K2 - 4K + 5 = 1   K2 - 4K + 4 = 0

 (K - 2)2 = 0 K = 2
Report
 Name Email
2.
Log xy = 100 and logx2 = 10, then the value of y is
• A.
210
• C.
21000
• B.
2100
• D.
210000
• Report
Explanation :
 logx2 = 10 x = 210
 logxy = 100 y = x100 = (210)100 = 21000
Report
 Name Email
3.
The characteristic of the logarithm 332.6 is
• A.
3
• C.
2
• B.
4
• D.
1
• Report
Explanation :
 Characteristic = 3 -1 = 2
Report
 Name Email
4.
If log4 log2 log3 (2x – 1) =
 1 2
, find x
• A.
82
• C.
51
• B.
41
• D.
62
• Report
Explanation :
Log4 log2 log3 (2x - 1) =
 1 2

log2 log3 (2x - 1) = 41/2 = 2

log3 (2x - 1) = 22 = 4

2x - 1 = 34 = 81
2x = 82
x = 41
Report
 Name Email
5.
If logab =
 1 2
, logbc =
 1 3
and logca =
 k 5
, the value of k is
• A.
25
• C.
30
• B.
35
• D.
20
• Report
Explanation :
logab =
 log b log a
, logbc =
 log c log b
, logca =
 log a log c

logab x logbc x logca =
 log b log a
x
 log c log b
x
 log a log c
=
 1 2
x
 1 3
x
 k 5

1 =
 k 30

k = 30
Report
 Name Email
• Pages
• 1
• 2